Temporal Weighted Averaging for Asynchronous Federated Intrusion Detection Systems

Author:

Agrawal Shaashwat1ORCID,Chowdhuri Aditi1ORCID,Sarkar Sagnik1ORCID,Selvanambi Ramani1ORCID,Gadekallu Thippa Reddy2ORCID

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India

2. School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India

Abstract

Federated learning (FL) is an emerging subdomain of machine learning (ML) in a distributed and heterogeneous setup. It provides efficient training architecture, sufficient data, and privacy-preserving communication for boosting the performance and feasibility of ML algorithms. In this environment, the resultant global model produced by averaging various trained client models is vital. During each round of FL, model parameters are transferred from each client device to the server while the server waits for all models before it can average them. In a realistic scenario, waiting for all clients to communicate their model parameters, where client models are trained on low-power Internet of Things (IoT) devices, can result in a deadlock. In this paper, a novel temporal model averaging algorithm is proposed for asynchronous federated learning (AFL). Our approach uses a dynamic expectation function that computes the number of client models expected in each round and a weighted averaging algorithm for continuous modification of the global model. This ensures that the federated architecture is not stuck in a deadlock all the while increasing the throughput of the server and clients. To implicate the importance of asynchronicity in cybersecurity, the proposed algorithm is tested using NSL-KDD intrusion detection system datasets. The performance accuracy of the global model is about 99.5% on the dataset, outperforming traditional FL models in anomaly detection. In terms of asynchronicity, we get an increased throughput of almost 10.17% for every 30 timesteps.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3