Modified Incisional Negative Pressure Wound Therapy Increases Seroma Evacuation: An Ex Vivo Model

Author:

Mehdorn Matthias1ORCID,Jansen-Winkeln Boris1ORCID

Affiliation:

1. Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 04103 Leipzig, Germany

Abstract

Background. Incisional negative wound pressure therapy (iNPWT) is a relatively novel dressing technique with the aim of reducing postoperative wound infections and dehiscence in high-risk wounds after all kinds of surgical procedures. There is a lack of theoretical knowledge about the way those dressing would ameliorate wound healing. One aspect is the reduction of superficial tension, but significant remaining seroma might still cause deep wound infections. The aim of this study was the evaluation of technical modifications of the standard iNPWT dressing to increase seroma evacuation. Methods. iNPWT dressings were applied on the porcine abdominal wall, and an incremental pressure ramp from 50 to 200 mmHg was performed. The resulting wound pressures were measured using (i) balloon manometry and (ii) esophageal manometry catheter. Seroma evacuation was analyzed with a seroma model. All measurements were performed with (i) standard iNPWT dressing, (ii) wound gauze diverted through the incision, and (iii) placement of suction drain tube into iNPWT. Results. Due to the modifications of the iNPWT dressing, the vacuum applied by the iNPWT dressing could be transferred into the wound and was not only restricted to superficial layers. More importantly, placement of wound gauzes or suction drain tubes led to complete extraction of wound seroma. The placement of the suction drain tube showed the best combination of increased intrawound pressure as well as seroma evacuation. Conclusion. Addition of a suction drain tube to the iNPWT dressing leads to an improved function of the iNPWT dressing in our ex vivo model.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3