Automatic Extraction of Two Regions of Creases from Palmprint Images for Biometric Identification

Author:

Yaacob Roszaharah1,Ooi Chok Dong2,Ibrahim Haidi2ORCID,Nik Hassan Nik Fakhuruddin1ORCID,Othman Puwira Jaya3,Hadi Helmi1

Affiliation:

1. School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

2. School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia

3. Fingerprint Department, Royal Malaysia Police Headquarter, Bukit Aman, 50560 Kuala Lumpur, Malaysia

Abstract

Palmprint has become one of the biometric modalities that can be used for personal identification. This modality contains critical identification features such as minutiae, ridges, wrinkles, and creases. In this research, feature from creases will be our focus. Feature from creases is a special salient feature of palmprint. It is worth noting that currently, the creases-based identification is still not common. In this research, we proposed a method to extract crease features from two regions. The first region of interest (ROI) is in the hypothenar region, whereas another ROI is in the interdigital region. To speed up the extraction, most of the processes involved are based on the processing of the image that has been a downsampled image by using a factor of 10. The method involved segmentations through thresholding, morphological operations, and the usage of the Hough line transform. Based on 101 palmprint input images, experimental results show that the proposed method successfully extracts the ROIs from both regions. The method has achieved an average sensitivity, specificity, and accuracy of 0.8159, 0.9975, and 0.9951, respectively.

Funder

the Public Service Department of Malaysia

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3