Affiliation:
1. Qingdao Huanghai College, Qingdao, Shandong 266427, China
Abstract
In recent years, in the field of virtual reality, in more and more scenes, users interact with hardware or programs through facial expressions. In order to give full play to the advantages of program interaction between virtual reality devices and users, this paper proposes a mobile virtual reality expression recognition system combined with convolution neural network. Based on the optimized AlexNet network, an expression recognition algorithm is constructed and combined with LBP feature mapping technology to improve the performance of the algorithm. At the same time, according to the nature and characteristics of mobile virtual reality devices, the user face information acquisition algorithm is optimized. The performance test results of the expression recognition system show that the recognition accuracy of the system is higher than that of the traditional convolution neural network expression recognition algorithm, and the maximum difference is greater than 10%. At the same time, the average running speed of the whole system is about 37 ms, which can meet the accuracy and real-time requirements of expression recognition in virtual reality interaction. The experimental results show that the expression recognition system proposed in this paper can be applied to mobile virtual reality devices. At the same time, it also provides new ideas for industry researchers to optimize the identification function.
Funder
Shandong Province Traditional Culture and Economic and Social Development
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science