Research on the Properties of Low Temperature and Anti-UV of Asphalt with Nano-ZnO/Nano-TiO2/Copolymer SBS Composite Modified in High-Altitude Areas

Author:

Xie Xiangbing1ORCID,Hui Tao2,Luo Yaofei1,Li Han1,Li Guanghui1ORCID,Wang Zhenyu1

Affiliation:

1. School of Civil Engineering and Architecture, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, China

2. Zhengzhou Communications Planning Survey & Design Institute, Zhengzhou, China

Abstract

Strong ultraviolet light and low-temperature are the typical environmental characteristics in high-altitude areas. The performance of SBS-modified asphalt in the above environmental characteristics needs further study. To improve the resistance ultraviolet (UV) ageing and low-temperature performance of copolymer- (SBS-) modified asphalt, an SBS-modified asphalt containing nano-ZnO and nano-TiO2 is proposed. In this paper, nano-ZnO, nano-TiO2, and SBS were used as modifiers with the silane coupling agent (KH-560) as the nanomaterial surface modification. The orthogonal test table was used to analyse the effects of the three modifiers on the physical properties of modified asphalt at different dosages. On this basis, the physical properties, low-temperature properties, and ageing indices (carbonyl index and sulfoxide index) were studied for base asphalt, SBS-modified asphalt, nano-ZnO/SBS-modified asphalt, and nano-ZnO/nano-TiO2/SBS composite-modified asphalt before and after photoaging. The content changes of characteristic elements (Zn and Ti) in the nano-ZnO/nano-TiO2/SBS composite-modified asphalt before and after ageing were studied by scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), and the UV ageing mechanism was revealed. The results indicate that two nanoparticles show the best compatibility with asphalt after surface modification and can improve the binding ability between SBS and base asphalt. The orthogonal test analysis shows that nano-ZnO has a highly significant effect on the low- and high-temperature performance of the nano-ZnO/nano-TiO2/SBS composite-modified asphalt, and nano-TiO2 has a significant effect on the high-temperature performance. Three optimal composite-modified systems for base asphalt including 4% nano-ZnO/1.5% nano-TiO2/3.2% SBS were proposed and had the best antiaging ability. Compared with the sulfoxide index, the carbonyl index changed most obviously before and after ageing. Additionally, the results reveal that nano-TiO2 has a good absorption effect at a wavelength of 365 nm (ultraviolet light), while nano-ZnO is liable to photolysis, and its activity decreases at this wavelength.

Funder

Key Scientific Research Project of Colleges and Universities in Henan Province

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3