An ASVSF-SLAM Algorithm with Time-Varying Noise Statistics Based on MAP Creation and Weighted Exponent

Author:

Tian Yingzhong12ORCID,Suwoyo Heru13ORCID,Wang Wenbin4,Li Long12ORCID

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

2. Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai 200444, China

3. Department of Electrical Engineering, Universitas Mercu Buana, Jakarta 11650, Indonesia

4. Mechanical and Electrical Engineering School, Shenzhen Polytechnic, Guangdong 518055, China

Abstract

The probability-based filtering method has been extensively used for solving the simultaneous localization and mapping (SLAM) problem. Generally, the standard filter utilizes the system model and prior stochastic information to approximate the posterior state. However, in the real-time situation, the noise statistics properties are relatively unknown, and the system is inaccurately modeled. Thus the filter divergence might occur in the integration system. Moreover, the expected accuracy might be challenging to be reached due to the absence of the responsive time-varying of both the process and measurement noise statistic which naturally can enlarge the uncertainty in the continuous system. Consequently, the traditional strategy needs to be improved aiming to provide an ability to estimate those properties. In order to accomplish this issue, the new adaptive filter is proposed in this paper, termed as an adaptive smooth variable structure filter (ASVSF). Sequentially, the improved SVSF is derived and implemented; the process and measurement noise statistics are estimated by utilizing the maximum a posteriori (MAP) creation and the weighted exponent concept, and the covariance correction step is added based on the divergence suppression concept. In this paper the ASVSF is applied to overcome the SLAM problem of an autonomous mobile robot; henceforth it is abbreviated as an ASVSF-SLAM algorithm. It is simulated and compared to the classical algorithm. The simulation results demonstrated that the proposed algorithm has better performance, stability, and effectiveness.

Funder

Special Plan of Major Scientific Instruments and Equipment of the State

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3