Confined van der Waals Epitaxial Growth of Two-Dimensional Large Single-Crystal In2Se3 for Flexible Broadband Photodetectors

Author:

Tang Lei1,Teng Changjiu1,Luo Yuting1,Khan Usman1,Pan Haiyang2,Cai Zhengyang1,Zhao Yue23,Liu Bilu1,Cheng Hui-Ming14

Affiliation:

1. Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China

2. Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

3. Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China

4. Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Abstract

The controllable growth of two-dimensional (2D) semiconductors with large domain sizes and high quality is much needed in order to reduce the detrimental effect of grain boundaries on device performance but has proven to be challenging. Here, we analyze the precursor concentration on the substrate surface which significantly influences nucleation density in a vapor deposition growth process and design a confined micro-reactor to grow 2D In2Se3 with large domain sizes and high quality. The uniqueness of this confined micro-reactor is that its size is ~102-103 times smaller than that of a conventional reactor. Such a remarkably small reactor causes a very low precursor concentration on the substrate surface, which reduces nucleation density and leads to the growth of 2D In2Se3 grains with sizes larger than 200 μm. Our experimental results show large domain sizes of the 2D In2Se3 with high crystallinity. The flexible broadband photodetectors based on the as-grown In2Se3 show rise and decay times of 140 ms and 25 ms, efficient response (5.6 A/W), excellent detectivity (7×1010 Jones), high external quantum efficiency (251%), good flexibility, and high stability. This study, in principle, provides an effective strategy for the controllable growth of high quality 2D materials with few grain boundaries.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3