FPGA Implementation of Real-Time Compressive Sensing with Partial Fourier Dictionary

Author:

Quan Yinghui1,Li Yachao1,Gao Xiaoxiao1,Xing Mengdao1

Affiliation:

1. National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

Abstract

This paper presents a novel real-time compressive sensing (CS) reconstruction which employs high density field-programmable gate array (FPGA) for hardware acceleration. Traditionally, CS can be implemented using a high-level computer language in a personal computer (PC) or multicore platforms, such as graphics processing units (GPUs) and Digital Signal Processors (DSPs). However, reconstruction algorithms are computing demanding and software implementation of these algorithms is extremely slow and power consuming. In this paper, the orthogonal matching pursuit (OMP) algorithm is refined to solve the sparse decomposition optimization for partial Fourier dictionary, which is always adopted in radar imaging and detection application. OMP reconstruction can be divided into two main stages: optimization which finds the closely correlated vectors and least square problem. For large scale dictionary, the implementation of correlation is time consuming since it often requires a large number of matrix multiplications. Also solving the least square problem always needs a scalable matrix decomposition operation. To solve these problems efficiently, the correlation optimization is implemented by fast Fourier transform (FFT) and the large scale least square problem is implemented by Conjugate Gradient (CG) technique, respectively. The proposed method is verified by FPGA (Xilinx Virtex-7 XC7VX690T) realization, revealing its effectiveness in real-time applications.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secure sparse watermarking on DWT-SVD for digital images;Journal of Information Security and Applications;2022-08

2. Joint Deep Dictionary Learning;2021 Ninth International Conference on Advanced Cloud and Big Data (CBD);2022-03

3. Optimized Continuous Wavelet Transform Algorithm Architecture and Implementation on FPGA for Motion Artifact Rejection in Radar-Based Vital Signs Monitoring;IEEE Access;2022

4. Single-pixel imaging: An overview of different methods to be used for 3D space reconstruction in harsh environments;Review of Scientific Instruments;2021-11-01

5. Simplified Implementation of Compressed Sensing Reconstruction Algorithm in FPGA;2021 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW);2021-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3