MCT-TTE: Travel Time Estimation Based on Transformer and Convolution Neural Networks

Author:

Liu Fengkai12ORCID,Yang Jianhua1ORCID,Li Mu3ORCID,Wang Kuo2ORCID

Affiliation:

1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China

2. North China Institute of Computing Technology, Beijing 100083, China

3. School of Computer Science and Engineering, Beihang University, Beijing 100191, China

Abstract

In this paper, we propose a new travel time estimation framework based on transformer and convolution neural networks (CNN) to improve the accuracy of travel time estimation. We design a traffic information fusion component, which fuses the GPS trajectory, real road network, and external attributes, to fully consider the influence of road network topological characteristics as well as the traffic temporal characteristics on travel time estimation. Moreover, we provide a multiview CNN transformer component to capture the spatial information of each trajectory point at multiple regional scales. Extensive experiments on Chengdu and Beijing datasets show that the mean absolute percent error (MAPE) of our MCT-TTE is 11.25% and 11.78%, which is competitive with the state-of-the-arts baselines.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference27 articles.

1. A survey on intelligent transportation systems;K. N. Qureshi;Middle East Journal of entific Research,2013

2. Applying lstm to time series predictable through time-window approached;F. A. Gers

3. Time series forecasting using a hybrid ARIMA and neural network model

4. Trajectory Data Mining

5. Distributed repre-sentations of words and phrases and their compositionality;T. Mikolov;Neural Information Processing Systems,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3