A Study of Resolution Improvement in Noncoherent Optical Coherence Imaging

Author:

Yang Guoliang1,Su Junhong1ORCID,Li Yuan1,Cai Jialin1,Li Yiren2

Affiliation:

1. Optical Engineering, Xi’an Technological University, Xi’an, China

2. Software Engineering, University of Aberdeen, Aberdeen, UK

Abstract

Noncoherent light, as a common light source in life, can effectively avoid problems such as scattering noise caused by optical components incoherent light imaging, and through the design of the optical path can also trigger interference and holographic imaging of objects, allowing holography to be used in more fields. Various techniques have emerged for recording holograms using incoherent light sources as technology has developed. A recording method has been proposed that exploits the correlation between the object wave information and the Fresnel band sheet to achieve incoherent hologram recording. Using a spatial light modulator (SLM) loaded with a bit-phase mask with multiplexed lens function, the incident light wavefield is phase-modulated to achieve diffraction spectroscopy and phase shifting. And holograms with different phase shifts can be obtained and combined with phase-shifting techniques to eliminate the effects of twin images caused by coaxial holography in the reproduction process. Based on the study of this incoherent holographic imaging system, the influence of the characteristics of the main components of the system and the corresponding parameters on the resolution of the recorded and reproduced holograms is investigated, and optimization methods are given from both theoretical and experimental studies. The empirical analysis of the FINCH imaging system is carried out. The observed optical path is designed, and the method of making a bit-phase mask loaded on a spatial light modulator is presented. The effect of the focal length and recording distance of the dislocation mask on the resolution of the system is investigated by both computer simulation and experimental operation.

Funder

Shaanxi science and technology plan project-key R & D plan

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3