Artificial Intelligence-based MRI Images for Brain in Prediction of Alzheimer's Disease

Author:

Bi Xiaowang1ORCID,Liu Wei1ORCID,Liu Huaiqin1ORCID,Shang Qun12ORCID

Affiliation:

1. Department of Radiology, Zibo Central Hospital, Zibo 255000, Shandong, China

2. China-Israel fMRI Precision Neuroimaging Joint Laboratory, Zibo 255000, Shandong, China

Abstract

The study aimed to explore the accuracy and stability of Deep metric learning (DML) algorithm in Magnetic Resonance Imaging (MRI) examination of Alzheimer's Disease (AD) patients. In this study, MRI data of patients obtained were from Alzheimer's Disease Neuroimaging Initiative (ADNI) database (A total of 180 AD cases, 88 women, 92 men; 188 samples in healthy conditions (HC), including 90 females and 98 males. 210 samples of mild cognitive impairment (MCI), 104 females and 106 males). On the basis of deep learning, an early AD diagnosis system was constructed using CNN (Convolutional Neural Network) and DML algorithms. Then, the system was used to classify AD, HC, and MCI, and the two algorithms were compared for the accuracy and stability of in classification of MRI images. It was found that in the classification of AD and HC, the classification accuracy and sensitivity of the deep measurement learning model are both 0.83, superior to the CNN model; in terms of specificity, the classification specificity of the DML model was 0.82, slightly lower than that of the CNN model; and that in the classification of MCI and HC, the classification accuracy and sensitivity of the DML model was 0.65, superior to the CNN model; and in terms of specificity, the classification specificity of the DML model was 0.66, slightly lower than that of the CNN model. It suggested that the DML model demonstrated better classification effects on early AD patients. The loss curve analysis results showed that, for classification of AD and HC or MCI and HC, the DML algorithm can improve the convergence speed of the AD early prediction model. Therefore, the DML algorithm can significantly improve the clarity and quality of MRI images, elevate the classification accuracy and stability of early AD patients, and accelerate the convergence of the model, providing a new way for early prediction of AD.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3