A Multiobjective Piglet Image Segmentation Method Based on an Improved Noninteractive GrabCut Algorithm

Author:

Kang Feilong1ORCID,Wang Chunguang1ORCID,Li Jia1ORCID,Zong Zheying1

Affiliation:

1. College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

Abstract

In the video monitoring of piglets in pig farms, study of the precise segmentation of foreground objects is the work of advanced research on target tracking and behavior recognition. In view of the noninteractive and real-time requirements of such a video monitoring system, this paper proposes a method of image segmentation based on an improved noninteractive GrabCut algorithm. The functions of preserving edges and noise reduction are realized through bilateral filtering. An adaptive threshold segmentation method is used to calculate the local threshold and to complete the extraction of the foreground target. The image is simplified by morphological processing; the background interference pixels, such as details in the grille and wall, are filtered, and the foreground target marker matrix is established. The GrabCut algorithm is used to split the pixels of multiple foreground objects. By comparing the segmentation results of various algorithms, the results show that the segmentation algorithm proposed in this paper is efficient and accurate, and the mean range of structural similarity is [0.88, 1]. The average processing time is 1606 ms, and this method satisfies the real-time requirement of an agricultural video monitoring system. Feature vectors such as edges and central moments are calculated and the database is well established for feature extraction and behavior identification. This method provides reliable foreground segmentation data for the intelligent early warning of a video monitoring system.

Funder

“Twelve-Five” National Science and Technology Support Program

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3