Collision Avoidance of 3D Rectangular Planes by Multiple Cooperating Autonomous Agents

Author:

Raj Jai1,Raghuwaiya Krishna2ORCID,Vanualailai Jito1

Affiliation:

1. School of Computing Information & Mathematical Sciences, The University of the South Pacific, Suva, Fiji

2. School of Education, The University of the South Pacific, Suva, Fiji

Abstract

We develop a set of novel autonomous controllers for multiple point-mass robots or agents in the presence of wall-like rectangular planes in three-dimensional space. To the authors’ knowledge, this is the first time that such a set of controllers for the avoidance of rectangular planes has been derived from a single attractive and repulsive potential function that satisfies the conditions of the Direct Method of Lyapunov. The potential or Lyapunov function also proves the stability of the system of the first-order ordinary differential equations governing the motion of the multiple agents as they traverse the three-dimensional space from an initial position to a target that is the equilibrium point of the system. The avoidance of the walls is via an approach called the Minimum Distance Technique that enables a point-mass agent to avoid the wall from the shortest distance away at every unit time. Computer simulations of the proposed Lyapunov-based controllers for the multiple point-mass agents navigating in a common workspace are presented to illustrate the effectiveness of the controllers. Simulations include towers and walls of tunnels as obstacles. In the simulations, the point-mass agents also show typical swarming behaviors such as split-and-rejoin maneuvers when confronted with multiple tower-like structures. The successful illustration of the effectiveness of the controllers opens a fertile area of research in the development and implementation of such controllers for Unmanned Aerial Vehicles such as quadrotors.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3