Circulating Expression Level of LncRNA Malat1 in Diabetic Kidney Disease Patients and Its Clinical Significance

Author:

Zhou Lian-ji1ORCID,Yang Da-wei2,Ou Li-Na2,Guo Xing-Rong2,Wu Biao-liang2ORCID

Affiliation:

1. Jinan University, Guangzhou 510632, China

2. Department of Endocrinology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China

Abstract

Background. Long noncoding RNA MALAT1 is closely related to diabetes and kidney diseases and is expected to be a new target for the diagnosis and treatment of diabetic nephropathy. Objective. This study aimed to explore the circulating expression level and significance of lncRNA Malat1 in patients with type 2 diabetes mellitus (T2DM) and diabetic kidney disease (DKD). Methods. Quantitative real-time PCR (qPCR) was conducted to assess the expression of lncRNA Malat1 in 20 T2DM patients, 27 DKD patients, and 14 healthy controls, and then, the clinical significance was analyzed. Results. LncRNA MALAT1 expression in peripheral blood mononuclear cells (PBMC) was significantly upregulated in T2DM and DKD groups when compared to control. Pearson’s correlation analysis showed correlation of lncRNA MALAT1 levels with ACR, urine β2-microglobulin (β2-MG), urine α1-microglobulin (α1-MG), creatinine (Cr), and glycosylated hemoglobin (HbA1c), while negative with superoxide dismutase (SOD) (r=0.388, P<0.05). Binary regression analysis showed that ACR, creatinine, α1-MG, and LncRNA Malat1 were the risk factors for diabetic nephropathy with OR value of 1.166, 1.031, 1.031, and 2.019 (P<0.05). The area under ROC curve (AUC) of DKD identified by the above indicators was 0.914, 0.643, 0.807, and 0.797, respectively. The AUC of Joint prediction probability of DKD recognition was 0.914, and the sensitivity and specificity of DKD diagnosis were 1.0 and 0.806, respectively. (Take ≥0.251 as the diagnostic cutoff point). Conclusion. LncRNA Malat1 is highly expressed in DKD patients, and the combined detection of ACR, creatinine, α1-MG, and LncRNA Malat1 with diabetes mellitus may be the best way to diagnose diabetic nephropathy.

Funder

Natural Science Foundation of Guangxi Province

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The potential therapeutic applications of long non-coding RNAs;Journal of Translational Genetics and Genomics;2024-06-27

2. LncRNA KIFAP3-5:1 inhibits epithelial-mesenchymal transition of renal tubular cell through PRRX1 in diabetic nephropathy;Cell Biology and Toxicology;2024-06-13

3. Attenuating the Polysulfide Shuttle Mechanism by Separator Coating;ChemPhysChem;2024-04-08

4. Long Non-Coding RNAs in Kidney Injury: A Comprehensive Review;Journal of Prevention, Diagnosis and Management of Human Diseases;2024-03-09

5. Recent Advances in the Management of Diabetic Kidney Disease: Slowing Progression;International Journal of Molecular Sciences;2024-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3