Elliptic Flow of Hadrons via Quark Coalescence Mechanism Using the Boltzmann Transport Equation for Pb+Pb Collision at sNN=2.76 TeV

Author:

Younus Mohammed1,Tripathy Sushanta1ORCID,Tiwari Swatantra Kumar1ORCID,Sahoo Raghunath1ORCID

Affiliation:

1. Discipline of Physics, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Indore 453552, India

Abstract

Elliptic flow of hadrons observed at relativistic heavy ion collision experiments at relativistic heavy ion collider (RHIC) and large hadron collider (LHC) provides us an important signature of possible deconfinement transition from the hadronic phase to partonic phase. However, hadronization processes of deconfined partons back into final hadrons are found to play a vital role in the observed hadronic flow. In the present work, we use a coalescence mechanism also known as recombination (ReCo) to combine quarks into hadrons. To get there, we have used the Boltzmann transport equation in relaxation time approximation to transport the quarks into equilibration and finally to freeze-out the surface, before coalescence takes place. A Boltzmann-Gibbs blast wave (BGBW) function is taken as an equilibrium function to get the final distribution and a power-like function to describe the initial distributions of partons produced in heavy ion collisions. In the present work, we try to estimate the elliptic flow of identified hadrons such as π, K, and p, produced in Pb+Pb collisions at sNN=2.76TeV at the LHC for different centralities. The elliptic flow (v2) of identified hadrons seems to be described quite well in the available pT range. After the evolution of quarks until freeze-out time has been calculated using BTE-RTA, the approach used in this paper consists of combining two or more quarks to explain the produced hadrons at intermediate momenta regions. The formalism is found to describe the elliptic flow of hadrons produced in Pb+Pb collisions to a large extent.

Funder

DST-INSPIRE program of Government of India

Publisher

Hindawi Limited

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3