Antimicrobial, Cytotoxic, and Antioxidant Potential of a Novel Flavone “6,7,4′-Trimethyl Flavone” Isolated from Wulfenia amherstiana

Author:

Kakar Maria1ORCID,Amin Muhammad Usman1ORCID,Alghamdi Saad2,Sahibzada Muhammad Umar Khayam3ORCID,Ahmad Nisar1ORCID,Ullah Naseem4

Affiliation:

1. Department of Pharmacy, Abasyn University, Peshawar, KPK 25000, Pakistan

2. Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia

3. Department of Pharmacy, Sarhad University of Information Technology, Peshawar, KPK 25000, Pakistan

4. Islam College of Pharmacy, Sialkot, Punjab, Pakistan

Abstract

Wulfenia amherstiana belongs to the Scrophulariaceae family and various plants of this family are known for their biological activities. The present study was focused on the isolation of bioactive compounds including a novel flavone 6,7,4′-trimethyl flavone (TMF) along with three known flavonoids such as quercetin, rutin, and a steroid β-sitosterol which were isolated from the ethanolic extract of W. amherstiana (Himalayan Wulfenia) through column chromatography and purified by using HPLC. Their structures were identified and elucidated through electron ionization mass spectroscopy (EIMS), 1DNMR (1H-NMR and 13C-NMR), and 2DNMR (COSY, HMQC, and HMBC) spectroscopy. The antimicrobial activities of this novel compound were evaluated through agar well diffusion method, while antioxidant and cytotoxic activities were assessed through 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging assay and brine shrimp lethality assay, respectively. The NMR data revealed that TMF is a novel compound. TMF showed potential antibacterial and antifungal activities against Staphylococcus aureus (MIC = 128 μg/ml) and Candida albicans (MIC = 128 μg/ml). The cytotoxic potential of TMF was determined from brine shrimp lethality assay with LD50 of 127.01 μg/ml. The free-radical scavenging potential of TMF at various concentrations implicated its strong antioxidant activity in vitro. The results revealed that TMF demonstrated substantial antimicrobial activity against S. aureus and C. albicans, strong antioxidant activity, and moderately cytotoxic activity.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3