Affiliation:
1. Eskişehir Technical University, Voc. School of Transportation 26140, Eskisehir, Turkey
Abstract
The mechanical resistance of a locomotive is crucial for power consumption. It is desirable to maintain this resistance at a minimum value for energy efficiency under optimal operation conditions. The optimal conditions can be found by particle swarm optimization with constraints. The particle swarm optimization method is a highly preferred type of heuristic algorithm because of its advantages, such as fewer parameters, faster speed, and a simpler flow diagram. However, fast convergence can be misleading in finding the optimum solution in some cases. Pareto analysis is used in this proposed study to prevent missing the target. When the literature is searched, it is seen that there are various studies using this method. However, in all of these studies, the results of the particle swarm method have been interpreted as whether or not they complied with Pareto’s 80/20 rule. The validity of the Pareto analysis is taken as an assumption, and with the help of this assumption, the coefficients of a locomotive’s mathematical equation were changed, and finally the results were found by applying the particle herd optimization method. Finally, a novel hybrid method has been created by including the Pareto optimality condition to particle swarm optimization. The results are compared with this innovative hybrid method of Pareto and particle swarm and the results found using only the particle swarm method.
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献