Affiliation:
1. Aerospace Institute, Northwestern Polytechnical University, Xi’an, Shaanxi, China
2. Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang, Sichuan, China
Abstract
To explore the influence of the trace point step-jump behavior on a terminal guidance system, an analysis is performed from the line-of-sight rate (LOS rate) and guidance accuracy views for designing an anti-step-jump guidance law. First, the linear terminal guidance model under the trace point jump circumstance is constructed, and then the fundamental reason for the miss distance is investigated by deriving the upper bound of the LOS rate at the initial step-jump moment. Following this, the novel proposed analytical differential adjoint model is established with the adjoint method, and its validity is demonstrated comparing with the numeric derivative model. Based on the adjoint model, the effects of the ratio coefficient, the time constant, and the jump amplitude on the guidance accuracy are explored. Finally, a novel anti-step-jump guidance law is designed to shorten the recovery time of the overload. The simulations have shown that the faster recovery time and higher accuracy are achieved in comparison with the proportional navigation guidance, optimal guidance, and adaptive sliding mode guidance.
Funder
National Natural Science Foundation of China