NGS Analysis of Clonality and Minimal Residual Disease in a Patient with Concurrent Richter’s Transformation and CLL/SLL

Author:

Kadkol Shrihari S.1ORCID,Bland Joshua1,Kavanaugh Ashley1,Ni Hongyu1,Nehru Vijeyaluxmi2,Peace David2

Affiliation:

1. Department of Pathology, University of Illinois, Chicago, Chicago, IL, USA

2. Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA

Abstract

B-cell lymphomas are neoplastic proliferations of clonal B lymphocytes. Clonality is generally determined by PCR amplification of VDJ rearrangements in the IgH heavy chain or VJ rearrangements in Igκ/Igλ light chain genes followed by capillary electrophoresis. More recently, next-generation sequencing (NGS) has been used to detect clonality in B-cell lymphomas because of the exponential amount of information that is obtained beyond just detecting a clonal population. The additional information obtained is useful for diagnostic confirmation, prognosis assessment, and response to therapy. In this study, we utilized NGS analysis to characterize two histologically distinct lymphomas (DLBCL and CLL/SLL) that were detected contemporaneously in an asymptomatic patient. NGS analysis showed that the same VDJ rearrangement was present in nodal (DLBCL) and marrow (CLL/SLL) biopsies confirming that the DLBCL resulted from Richter’s transformation of a subclinical CLL/SLL. The V region of the rearrangement remained unmutated without somatic hypermutation. In silico analysis showed that the HCDR3 sequence was heterogeneous and not stereotypic. Minimal residual disease analysis by NGS showed that the tumor clone decreased by 2.84 logs in the bone marrow after R-CHOP therapy. However, a small number of tumor cells were still detected in the peripheral blood after R-CHOP therapy. Subsequent allogeneic transplantation was successful in eradicating the tumor clone and achieving deep molecular remission. We show that NGS analysis facilitated clinical management in our patient by helping to characterize the VDJ rearrangement in detail and by tracking minimal residual disease with high sensitivity and specificity.

Funder

University of Illinois at Chicago

Publisher

Hindawi Limited

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3