GIS-Based Spatial Autocorrelation Analysis of Housing Prices Oriented towards a View of Spatiotemporal Homogeneity and Nonstationarity: A Case Study of Guangzhou, China

Author:

Chen Shaopei1ORCID,Zhuang Dachang1ORCID,Zhang Huixia1

Affiliation:

1. School of Public Administration, Guangdong University of Finance and Economics, Guangzhou, China

Abstract

In the past decades, the booming growth of housing markets in China triggers the urgent need to explore how the rapid urban spatial expansion, large-scale urban infrastructural development, and fast-changing urban planning determine the housing price changes and spatial differentiation. It is of great significance to promote the existing governing policy and mechanism of housing market and the reform of real-estate system. At the level of city, an empirical analysis is implemented with the traditional econometric models of regressive analysis and GIS-based spatial autocorrelation models, focusing in examining and characterizing the spatial homogeneity and nonstationarity of housing prices in Guangzhou, China. There are 141 neigborhoods in Guangzhou identified as the independent individuals (named as area units), and their values of the average annual housing prices (AAHP) in (2009–2015) are clarified as the dependent variables in regressing analysis models used in this paper. Simultaneously, the factors including geographical location, transportation accessibility, commercial service intensity, and public service intensity are identified as independent variables in the context of urban development and planning. The integration and comparative analysis of multiple linear regression models, spatial autocorrelation models, and geographically weighted regressing (GWR) models are implemented, focusing on exploring the influencing factors of house prices, especially characterizing the spatial heterogeneity and nonstationarity of housing prices oriented towards the spatial differences of urban spatial development, infrastructure layout, land use, and planning. This has the potential to enrich the current approaches to the complex quantitative analysis modelling of housing prices. Particularly, it is favorable to examine and characterize what and how to determine the spatial homogeneity and nonstationarity of housing prices oriented towards a microscale geospatial perspective. Therefore, this study should be significant to drive essential changes to develop a more efficient, sustainable, and competitive real-estate system at the level of city, especially for the emerging and dynamic housing markets in the megacities in China.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3