A Deep Ranking Weighted Multihashing Recommender System for Item Recommendation

Author:

Kumar Suresh1ORCID,Singh Jyoti Prakash1ORCID,Jain Vinay Kumar2ORCID,Marahatta Avinab3ORCID

Affiliation:

1. Department of Computer Science and Engineering, NIT Patna, India

2. Department of Management (PG), MIT World Peace University, Pune, India

3. Center for Multidisciplinary Studies and Innovation (CeMuSI), Kathmandu, Nepal

Abstract

Collaborative filtering (CF) techniques are used in recommender systems to provide users with specialised recommendations on social websites and in e-commerce. But they suffer from sparsity and cold start problems (CSP) and fail to interpret why they recommend a new item. A novel deep ranking weighted multihash recommender (DRWMR) system is designed to suppress sparsity and CSP. The proposed DRWMR system contains two stages: the neighbours’ formation and recommendation phases. Initially, the data is fed to the deep convolutional neural network (CNN). The significant features are extracted from CNN. The CNN contains an additional layer; the hash code is generated by minimising pairwise ranking loss and classification loss. Therefore, a weight is assigned to different hash tables and hash bits for a recommendation. Then, the similarity between users is obtained based on the weighted hammering distance; the similarity between users helps to form the neighbourhood for the active user. Finally, the rating for unknown items can be obtained by taking the weighted average rating of the neighbourhood, and a list of the top n items can be produced. The effectiveness and accuracy of the proposed DRWMR system are tested on the MovieLens 100 K dataset and compared with the existing methods. Based on the evaluation results, the proposed DRWMR system gives precision (0.16), the root mean squared error (RMSE) of 0.73 and the recall (0.08), the mean absolute error (MAE) of 0.57, and the F − 1 measure (0.101).

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid recommendation algorithm based on user nearest neighbor model;Scientific Reports;2024-07-25

2. A novel cascaded multi-task method for crop prescription recommendation based on electronic medical record;Computers and Electronics in Agriculture;2024-04

3. Enhancing Recommender Systems to Alleviate Data Sparsity and the Cold Start Problem;2023 12th International Conference on System Modeling & Advancement in Research Trends (SMART);2023-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3