Magnetic Resonance Imaging Evaluation of Hemangioma Resection for Encephalofacial Angiomatosis (Sturge–Weber Syndrome) in Children under Intelligent Algorithm

Author:

Lv Yini1ORCID,Liang Guoan1ORCID,Fan Hailing1ORCID,Cheng Jun2ORCID,Xing Panwei3ORCID,Zhu Lili4ORCID

Affiliation:

1. Department of Pediatrics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, Zhejiang, China

2. Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, Zhejiang, China

3. Department of Radiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, Zhejiang, China

4. Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, Zhejiang, China

Abstract

This study was aimed to evaluate the clinical efficacy of hemangioma resection in the treatment of infantile encephalofacial angiomatosis (Sturge–Weber syndrome, SWS) through magnetic resonance imaging (MRI) images, and intelligent algorithms were employed to process MRI images. A retrospective study of 45 children diagnosed with facial hemangioma admitted to hospital was conducted. Then, MRS images were acquired, and a mathematical model for MRI image denoising and reconstruction was constructed based on nonlocal similar block low-rank prior algorithms. The processing effect was assessed regarding the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Finally, MRI images were collected to analyze the difference between the metabolites of N-acetylaspartic acid (NAA), creatine (Cr), choline (Cho), and their ratios in the lesions of the children before and after treatment. The improvement rate was analyzed through a twelve-month follow-up. The algorithm test results showed that compared with the classic K-singular value decomposition (K-SVD) denoising algorithm and the Sparse MRI reconstruction algorithm, the proposed algorithm processed MRI images more clearly and had more detailed information. The quantitative results showed that the PSNR and SSIM in the image processed by the algorithm proposed were remarkably large. The clinical treatment results showed that compared with those before treatment, the nCho level after treatment, the ratio of Cho/Cr and Cho/NAA were remarkably reduced, and the difference was remarkable (P < 0.05). The follow-up results showed that the considerable improvement rate was 88.89%, the postoperative organ remodeling rate was 17.78%, and the probability of reoperation was only 6.67%. In summary, the introduction of intelligent algorithms for denoising and reconstruction of MRI images can remarkably improve image quality and help doctors use image information to diagnose diseases and evaluate treatment effects. The hemangioma resection for the treatment of pediatric SWS had a high treatment improvement rate and was worthy of clinical adoption.

Funder

Taizhou Technology Bureau

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3