Prediction of Daily Blood Sampling Room Visits Based on ARIMA and SES Model

Author:

Zhang Xinli1,Yu Yu1,Xiong Fei1,Luo Le1ORCID

Affiliation:

1. Department of Industrial Engineering and Engineering Management, Business School of Sichuan University, Chengdu 610065, China

Abstract

This paper is aimed at establishing a combined prediction model to predict the demand for medical care in terms of daily visits in an outpatient blood sampling room, which provides a basis for rational arrangement of human resources and planning. On the basis of analyzing the comprehensive characteristics of the randomness, periodicity, trend, and day-of-the-week effects of the daily number of blood collections in the hospital, we firstly established an autoregressive integrated moving average model (ARIMA) model to capture the periodicity, volatility, and trend, and secondly, we constructed a simple exponential smoothing (SES) model considering the day-of-the-week effect. Finally, a combined prediction model of the residual correction is established based on the prediction results of the two models. The models are applied to data from 60 weeks of daily visits in the outpatient blood sampling room of a large hospital in Chengdu, for forecasting the daily number of blood collections about 1 week ahead. The result shows that the MAPE of the combined model is the smallest overall, of which the improvement during the weekend is obvious, indicating that the prediction error of extreme value is significantly reduced. The ARIMA model can extract the seasonal and nonseasonal components of the time series, and the SES model can capture the overall trend and the influence of regular changes in the time series, while the combined prediction model, taking into account the comprehensive characteristics of the time series data, has better fitting prediction accuracy than a single model. The new model can well realize the short-to-medium-term prediction of the daily number of blood collections one week in advance.

Funder

Sichuan University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3