Effect of Hydrophilicity/Hydrophobicity of the Injector Wall on Atomization Performance

Author:

Zhang Xiaoyu1ORCID,Zhang Xiaolei1ORCID,Duan Runze12ORCID,Liu Lujia3ORCID

Affiliation:

1. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China

2. Hebei Key Laboratory of Thermal Science and Energy Clean Utilization, Tianjin 300401, China

3. Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland

Abstract

Hydrophilicity/hydrophobicity is a common physical property of the material. Water droplets roll on lotus leaf, and a lot of dust and dirt on the surface of the lotus leaf will be taken away, playing a certain cleaning role. The hydrophobic surface has drag reduction effect that would produce slip on the hydrophobic wall. There are some studies on hydrophilicity/hydrophobicity in channels, most of which focus on the effect of surface drag reduction and heat transfer on microchannels. However, few people pay attention to the effect of the hydrophilicity/hydrophobicity of the injector inner wall on the atomization performance. In this paper, three groups of the open-end swirl injector with different tangential channels were designed to study the effect of hydrophilicity/hydrophobicity on atomization performance. The hydrophobic coating was prepared and used on the inner wall of the injector, and the atomization experimental system was built. In the experiment, the liquid film thickness was measured using the conductance method. Details of the liquid film breakup and spray development were recorded with a high-speed camera. The average droplet diameter was measured by the Malvern particle size analyzer. The atomization performance of injectors with different tangential channels on the hydrophilicity/hydrophobicity was compared, and the effect of the velocity profile on the jet stability is discussed.

Funder

Industrial Technology Research of Hebei University of Technology

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3