A Novel Approach to Skin Lesion Segmentation: Multipath Fusion Model with Fusion Loss

Author:

Alhudhaif Adi1ORCID,Ocal Hakan2,Barisci Necaattin2,Atacak İsmail3ORCID,Nour Majid4ORCID,Polat Kemal5ORCID

Affiliation:

1. Department of Computer Science, College of Computer Engineering and Sciences in Al-kharj, Prince Sattam bin Abdulaziz University, Saudi Arabia

2. Computer Engineering (FT), Gazi University, Emniyet Mh., Milas Sk. No: 30, 06560 Yenimahalle, Ankara, Turkey

3. Gazi University, Technology Faculty, Computer Engineering, Ankara, Turkey

4. Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

5. Department of Electrical and Electronics Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey

Abstract

Segmentation of skin lesions plays a very important role in the early detection of skin cancer. However, indistinguishability due to various artifacts such as hair and contrast between normal skin and lesioned skin is an important challenge for specialist dermatologists. Computer-aided diagnostic systems using deep convolutional neural networks are gaining importance in order to cope with difficulties. This study focuses on deep learning-based fusion networks and fusion loss functions. For the automatic segmentation of skin lesions, U-Net (U-Net + ResNet 2D) with 2D residual blocks and 2D volumetric convolutional neural networks were fused for the first time in this study. Also, a new fusion loss function is proposed by combining Dice Loss (DL) and Focal Tversky Loss (FTL) to make the proposed fused model more robust. Of the 2594 image dataset, 20% is reserved for test data and 80% for training data. In test data training, a Jaccard score of 0.837 and a dice score of 0.918 were obtained. The proposed model was also scored on the ISIC 2018 Task 1 test images, whose ground truths were not shared. The proposed model performed well and achieved a Jaccard index of 0.800 and a dice score of 0.880 in the ISIC 2018 Task 1 test set. In addition, it has been observed that the new fused loss function obtained by fusing Focal Tversky Loss and Dice Loss functions in the proposed model increases the robustness of the model in the tests. The proposed new loss function fusion model has outstripped the cutting-edge approaches in the literature.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3