Parallel MapReduce: Maximizing Cloud Resource Utilization and Performance Improvement Using Parallel Execution Strategies

Author:

Al-Absi Ahmed Abdulhakim12ORCID,Al-Sammarraie Najeeb Abbas2,Shaher Yafooz Wael Mohamed2,Kang Dae-Ki3ORCID

Affiliation:

1. Department of Smart Computing, Kyungdong University, Global Campus, 46 4-gil, Gosung, Gangwondo 24764, Republic of Korea

2. Faculty of Computer and Information Technology, Al-Madinah International University, 2 Jalan Tengku Ampuan Zabedah E/9E, 40100 Shah Alam, Selangor, Malaysia

3. Department of Computer & Information Engineering, Dongseo University, 47 Jurye-ro, Sasang-gu, Busan 47011, Republic of Korea

Abstract

MapReduce is the preferred cloud computing framework used in large data analysis and application processing. MapReduce frameworks currently in place suffer performance degradation due to the adoption of sequential processing approaches with little modification and thus exhibit underutilization of cloud resources. To overcome this drawback and reduce costs, we introduce a Parallel MapReduce (PMR) framework in this paper. We design a novel parallel execution strategy of Map and Reduce worker nodes. Our strategy enables further performance improvement and efficient utilization of cloud resources execution of Map and Reduce functions to utilize multicore environments available with computing nodes. We explain in detail makespan modeling and working principle of the PMR framework in the paper. Performance of PMR is compared with Hadoop through experiments considering three biomedical applications. Experiments conducted for BLAST, CAP3, and DeepBind biomedical applications report makespan time reduction of 38.92%, 18.00%, and 34.62% considering the PMR framework against Hadoop framework. Experiments' results prove that the PMR cloud computing platform proposed is robust, cost-effective, and scalable, which sufficiently supports diverse applications on public and private cloud platforms. Consequently, overall presentation and results indicate that there is good matching between theoretical makespan modeling presented and experimental values investigated.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3