Medical Specialty Classification Based on Semiadversarial Data Augmentation

Author:

Zhang Huan12,Zhu Dong1,Tan Hao12,Shafiq Muhammad1ORCID,Gu Zhaoquan23ORCID

Affiliation:

1. Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China

2. Department of New Networks, Peng Cheng Laboratory, Shenzhen, China

3. School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China

Abstract

Rapidly increasing adoption of electronic health record (EHR) systems has caused automated medical specialty classification to become an important research field. Medical specialty classification not only improves EHR system retrieval efficiency and helps general practitioners identify urgent patient issues but also is useful in studying the practice and validity of clinical referral patterns. However, currently available medical note data are imbalanced and insufficient. In addition, medical specialty classification is a multicategory problem, and it is not easy to remove sensitive information from numerous medical notes and tag them. To solve those problems, we propose a data augmentation method based on adversarial attacks. The semiadversarial examples generated during the dynamic process of adversarial attacking are added to the training set as augmented examples, which can effectively expand the coverage of the training data on the decision space. Besides, as nouns in medical notes are critical information, we design a classification framework incorporating probabilistic information of nouns, with confidence recalculation after the softmax layer. We validate our proposed method on an 18-class dataset with extremely unbalanced data, and comparison experiments with four benchmarks show that our method improves accuracy and F1 score to the optimal level, by an average of 14.9%.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3