Modulation of Optical and Electrical Characteristics by Laterally Stretching DNAs on CVD-Grown Monolayers of MoS2

Author:

Neupane Guru P.1,Tran Minh Dao1,Kim Hyun1,Kim Jeongyong1ORCID

Affiliation:

1. Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 440-746, Republic of Korea

Abstract

Monolayer MoS2 (1L-MoS2) is an ideal platform to examine and manipulate two dimensionally confined exciton complexes, which provides a large variety of modulating the optical and electrical properties of 1L-MoS2. Extensive studies of external doping and hybridization exhibit the possibilities of engineering the optical and electrical performance of 1L-MoS2. However, biomodifications of 1L-MoS2 and the characterization and applications of such hybrid structures are rarely reported. In this paper, we present a bio-MoS2 hybrid structure fabricated by laterally stretching strands of DNAs on CVD-grown 1L-MoS2. We observed a strong modification of photoluminescence and Raman spectra with reduced PL intensity and red-shift of PL peak and Raman peaks, which were attributed to electron doping by the DNAs and the presence of tensile strain in 1L-MoS2. Moreover, we observed a significant enhancement of electric mobility in the DNA/1L-MoS2 hybrid compared to that in the pristine 1L-MoS2, which may have been caused by the induced strain in 1L-MoS2.

Funder

IBS-R011-D1

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3