Numerical Assessment on Unloading Disturbance and Gas Extraction in Remote Distance Protective Layer Mining

Author:

Yuan Zhigang123ORCID,Jiang Zehua1,Li Shuqing123,Zhao Jintao1,Huang Fei123ORCID

Affiliation:

1. School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

2. Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines, Hunan University of Science and Technology, Xiangtan 411201, China

3. Hunan Provincial Key Laboratory of Safe Mining Techniques of Coal Mines, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

Protective layer mining could not only significantly alter geostress but also increase the permeability of protected layer, which is beneficial for the coal gas extraction rate and ensures coal mining safety. However, due to unique geologic conditions, remote distance protective layer mining has its own characteristics. To investigate characteristic changes caused by remote distance protective layer mining, a suitable mathematical model that considered disturbance of unloading mining and solid-gas coupling effects during gas extraction was developed. The established mathematical model was implemented by combining FLAC3D and COMSOL programs to study characteristic changes during remote distance protective layer mining of Chajiaotan coal mine. Numerical simulation results of unloading disturbance mining indicated that the protected layer would experience a process of stress loading, stress unloading, stress recovery, and stress stability as the working face of protective layer advanced; unloading disturbance has a greater influence on coal permeability than gas pressure; gas extraction measure should be further adopted to decrease gas pressure. Numerical comparisons of gas pressure distribution in the original protected layer and unloading protected layer revealed that gas extraction after unloading disturbance can reduce gas pressure more effectively, and appropriate borehole spacings in the fully pressure-relief and nonfully pressure-relief zones are 30 m and 5 m, respectively. The layout of field boreholes for gas extraction was designed according to numerical results. The results of site investigation showed that numerical simulation results of relative expansion deformation and gas extraction radii agree well with the results of site observation, demonstrating reliability of the mathematical model and its implementation. The proposed mathematical model is promising for assessing unloading disturbance and gas extraction in remote distance protective layer mining.

Funder

Scientific Research Foundation of Hunan Provincial Education Department

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3