Broad Echo State Network with Reservoir Pruning for Nonstationary Time Series Prediction

Author:

Liu Wenjie123ORCID,Bai Yuting123ORCID,Jin Xuebo123ORCID,Wang Xiaoyi123ORCID,Su Tingli123ORCID,Kong Jianlei123ORCID

Affiliation:

1. School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

2. Beijing Laboratory for Intelligent Environmental Protection, Beijing Technology and Business University, Beijing 100048, China

3. State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China

Abstract

The nonstationary time series is generated in various natural and man-made systems, of which the prediction is vital for advanced control and management. The neural networks have been explored in the time series prediction, but the problem remains in modeling the data’s nonstationary and nonlinear features. Referring to the time series feature and network property, a novel network is designed with dynamic optimization of the model structure. Firstly, the echo state network (ESN) is introduced into the broad learning system (BLS). The broad echo state network (BESN) can increase the training efficiency with the incremental learning algorithm by removing the error backpropagation. Secondly, an optimization algorithm is proposed to reduce the redundant information in the training process of BESN units. The number of neurons in BESN with a fixed step size is pruned according to the contribution degree. Finally, the improved network is applied in the different datasets. The tests in the time series of natural and man-made systems prove that the proposed network performs better on the nonstationary time series prediction than the typical methods, including the ESN, BLS, and recurrent neural network.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3