Investigation of Oxidation and Counter-Oxidation in a One-Quarter Circular Geometry due to Shadow Corrosion

Author:

Enivweru Doctor12ORCID,Wang Qingyu1ORCID,Ayodeji Abiodun23ORCID,Zhou Yu1

Affiliation:

1. College of Nuclear Science and Technology, Harbin Engineering University, No. 145 Nantong Street, Nangang District, Harbin 150001, China

2. Nigeria Atomic Energy Commission, 9 Kwame Nkrumah Crescent, Asokoro, P.M.B. 646 Garki, Abuja, Nigeria

3. State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

To optimize fission fuel and protect cladding integrity, this work investigates shadow corrosion in a one-fourth circular electrode geometry. The anodic corrosion of Zircaloy-2 (Zry-2) was investigated in a circular geometry electrode configuration under reactor operating conditions. The impact of gamma and neutron radiations on water conductivity and shadow corrosion was examined under two different cathodes. This work also investigates the effect of current exchange density and the cathodic Tafel coefficient on the cathodic current. Using COMSOL Multiphysics 5.2, the Laplace equation was solved to obtain the electrostatic potential and current density distributions in the studied domain. When the distance d between the anode (Zry-2) and cathode (platinum/nickel) is ≤0.5 mm, it was observed that a uniform oxide layer of thickness 20 µm grew on the smooth internal surface of Zry-2 for corrosion lasting 1166 h. When d > 0.5 mm, the oxide thickness falls in a manner dictated by the degree of dissociation α of the electrolyte. At a cladding gap of 0.08 mm, a radiation-enhanced uniform corrosion rate of 2.405 10−1 mmpy was obtained for Zry-2. This value is 142 times greater than that obtained at room temperature in the absence of radiation. It was also observed that the corrosion rate falls at higher cladding gaps, and the rate of change depends on the degree of dissociation. Other phenomena such as the dynamics of shadow corrosion under varying electrode separation and electrolyte conductivities, as well as extensive evaluation of critical fuel cladding parameters, are presented in this work.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3