Astilbin fromSmilax glabraRoxb. Attenuates Inflammatory Responses in Complete Freund’s Adjuvant-Induced Arthritis Rats

Author:

Dong Lisha12,Zhu Jinqiu34ORCID,Du Hongzhi1,Nong Heng1,He Xicheng1,Chen Xiaoyu5ORCID

Affiliation:

1. School of Pharmacy, Guiyang College of Traditional Chinese Medicine, Guiyang 550002, China

2. Center of Miao Medicine Engineering Technology, Guiyang 550002, China

3. School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China

4. Department of Epidemiology and Environmental Health, The State University of New York, Buffalo, NY, USA

5. School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong

Abstract

Astilbin, a flavonoid compound, was isolated from the rhizome ofSmilax glabraRoxb. (with red cross-section) grown in Guizhou Province, China. We accessed its effect and potential mechanism on attenuation of the inflammatory response in CFA-induced AA rats. Our results showed that daily oral administration of astilbin at 5.3 mg/kg reduced joint damage in the hind paw of AA rats. Accordingly, astilbin exhibited remarkable inhibitory effects on TNF-α, IL-1β, and IL-6 mRNA expression. Significant decrease of serum cytokine levels of TNF-α, IL-1β, and IL-6 was also observed in astilbin-treated AA rats compared to the vehicle-treated AA rats. The reduced expression of these cytokines was associated with protein activity suppression of three key molecular targets in the pathogenesis of RA, including IKKβ, NF-κB p65 subunit, and TLR adaptor MyD88. Furthermore, the therapeutic effects of astilbin on the inhibition of cytokines production as well as the reduction of inflammatory response in AA rats are close to a commonly used antirheumatic drug, leflunomide. Collectively, our data suggest that the action mechanism of astilbin, as an anti-inflammatory agent for RA treatment, is associated with modulating the production of proinflammatory cytokines and inhibiting the expression of key elements in NF-κB signaling pathway mediated by TLR.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3