Polymethyl Methacrylate-Based Smart Microfluidic Point-of-Care Testing of Prothrombin Time and International Normalized Ratio through Optical Detection

Author:

Abdulhay Enas W.1ORCID,Khnouf Ruba E.1,Karain Yahia M.1,Al Omari Taqwa K.1,Ebeid Nourshan M.1,Al Muhtaseb Tamara H.1,Arunkumar N.2,Thilagaraj M.3,Ramirez-Gonzalez Gustavo4

Affiliation:

1. Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan

2. Department of Biomedical Engineering, Rathinam Technical Campus, Coimbatore, India

3. Department of Electronics and Instrumentation Engineering, Karpagam College of Engineering, Coimbatore, India

4. Departamento de Telematica, Universidad del Cauca, Colombia

Abstract

The mechanical heart valve is a crucial solution for many patients. However, it cannot function on the state of blood as human tissue valves. Thus, people with mechanical valves are put under anticoagulant therapy. A good measurement of the state of blood and how long it takes blood to form clots is the prothrombin time (PT); moreover, it is an indicator of how well the anticoagulant therapy is, and of whether the response of the patient to the drug is as needed. For a more specific standardized measurement of coagulation time, an international normalized ratio (INR) is established. Clinical testing of INR and PT is relatively easy. However, it requires the patient to visit the clinic for evaluation purposes. Many techniques are therefore being developed to provide PT and INR self-testing devices. Unfortunately, those solutions are either inaccurate, complex, or expensive. The present work approaches the design of an anticoagulation self-monitoring device that is easy to use, accurate, and relatively inexpensive. Hence, a two-channel polymethyl methacrylate-based microfluidic point-of-care (POC) smart device has been developed. The Arduino based lab-on-a-chip device applies optical properties to a small amount of blood. The achieved accuracy is 96.7%.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3