Correlation Analysis of Synchronization Type and Degree in Respiratory Neural Network

Author:

Xu Jieqiong12ORCID,Yuan Quan23,Chen Huiying1

Affiliation:

1. School of Mathematics and Information Science, Guangxi University, Nanning 53004, China

2. Scientific Research Center of Engineering Mechanics, Guangxi University, Nanning 53004, China

3. School of Civil and Architectural Engineering, Guangxi University, Nanning, China

Abstract

Pre-Bötzinger complex (PBC) is a necessary condition for the generation of respiratory rhythm. Due to the existence of synaptic gaps, delay plays a key role in the synchronous operation of coupled neurons. In this study, the relationship between synchronization and correlation degree is established for the first time by using ISI bifurcation and correlation coefficient, and the relationship between synchronization and correlation degree is discussed under the conditions of no delay, symmetric delay, and asymmetric delay. The results show that the phase synchronization of two coupling PBCs is closely related to the weak correlation, that is, the weak phase synchronization may occur under the condition of incomplete synchronization. Moreover, the time delay and coupling strength are controlled in the modified PBC network model, which not only reveals the law of PBC firing transition but also reveals the complex synchronization behavior in the coupled chaotic neurons. Especially, when the two coupled neurons are nonidentical, the complete synchronization will disappear. These results fully reveal the dynamic behavior of the PBC neural system, which is helpful to explore the signal transmission and coding of PBC neurons and provide theoretical value for further understanding respiratory rhythm.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3