An Implicit Memory-Based Method for Supervised Pattern Recognition

Author:

Ma Yu123ORCID,Wang Shafei14ORCID,Yang Junan5,Bao Yanfei1,Yang Jian1

Affiliation:

1. Academy of Military Science of the People’s Liberation Army, Beijing 100000, China

2. Naval Aviation University, Yantai 264000, China

3. Peng Cheng Laboratory, Shenzhen 518000, China

4. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

5. Institution of Electronic Countermeasure, National University of Defense Technology, Hefei 230037, China

Abstract

How the human brain does recognition is still an open question. No physical or biological experiment can fully reveal this process. Psychological evidence is more about describing phenomena and laws than explaining the physiological processes behind them. The need for interpretability is well recognized. This paper proposes a new method for supervised pattern recognition based on the working pattern of implicit memory. The artificial neural network (ANN) is trained to simulate implicit memory. When an input vector is not in the training set, the ANN can treat the input as a “do not care” term. The ANN may output any value when the input is a “do not care” term since the training process needs to use as few neurons as possible. The trained ANN can be expressed as a function to design a pattern recognition algorithm. Using the Mixed National Institute of Standards and Technology database, the experiments show the efficiency of the pattern recognition method.

Publisher

Hindawi Limited

Subject

Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3