Voltage and Current Balancing of a Faulty Photovoltaic System Connected to Cascaded H‐Bridge Multilevel Inverter

Author:

Djermouni KamelORCID,Berboucha AliORCID,Tamalouzt SalahORCID,Ziane DjamelORCID

Abstract

A healthy operation of photovoltaic installations (similar to all electrical systems) is always limited by breakdown, degradation due to aging, or imbalance caused by weather conditions. In this context, producing the maximum energy possible with an acceptable form factor is a significant challenge for autonomous systems, especially those connected to the grid. In this paper, we have two main issues to address. The first is determining the maximum power point of an unbalanced photovoltaic field (due to a defect or nonuniform weather conditions affecting the photovoltaic generators). For such a system, the particle swarm optimization (PSO) algorithm remains highly effective because it can easily handle the existence of multiple maxima simultaneously to provide the best possible solution. The second challenge is managing the imbalance between the three phases of the photovoltaic system. In this context, the results of conducted studies propose two approaches to balance and maximize the power supplied by the photovoltaic generator and converters. In addition, the presence of a battery storage system plays dual roles: firstly, compensating the power fluctuations due to nonuniform operating conditions between phases, and secondly, ensuring system power supply during periods of no sunlight exposure. The proposed approaches take into account the constraints imposed on DC voltages and currents to ensure optimal integration with the multilevel inverter stage (cascaded H‐bridge multilevel inverters). This is achieved through selective harmonic elimination control without the need for a filtering system. A comparative study between these two approaches will be conducted to assess their advantages and disadvantages. The battery‐based storage system efficiently absorbs excess energy and provides energy during deficits, thanks to a flexible control mechanism that allows easy switching between different battery groups and phases.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3