Characterisation of a LINE-1 Insertion in the RP1 Gene by Targeted Adaptive Nanopore Sequencing in a Family with Retinitis Pigmentosa

Author:

Backlund Michael P.1ORCID,Repo Pauliina12,Kangas Harri3,Donner Kati3,Sankila Eeva-Marja2,Krootila Julia1,Paavo Maarjaliis2,Wartiovaara Kirmo4,Kivelä Tero T.2,Turunen Joni A.12ORCID

Affiliation:

1. Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland

2. Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

3. Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland

4. Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

Abstract

Retinitis pigmentosa (RP) is a group of inherited degenerative retinal disorders affecting more than 1.5 million people worldwide. For 30-50% of individuals with RP, the genetic cause remains unresolved by current clinical diagnostic gene panels. It is likely explained by variants in novel RP-associated genes or noncoding regulatory regions, or by complex genetic alterations such as large structural variants. Recent developments in long-read sequencing techniques have opened an opportunity for efficient analysis of complex genetic variants. We analysed a Finnish family with dominantly inherited RP affecting six individuals in three generations. Two affected individuals underwent a comprehensive clinical examination in combination with a clinical diagnostic gene panel, followed by whole exome sequencing in our laboratory. They exhibited typical signs of RP, yet initial sequence analysis found no causative variants. Reanalysis of the sequencing data detected a LINE-1 (L1) retrotransposon insertion of unknown size in exon 4 of the RP1 axonemal microtubule-associated (RP1) gene. The large chimeric L1 insertion that segregated with the disease was further characterised using targeted adaptive nanopore sequencing of RP1, allowing us to identify a 5.6 kb L1 transposable element insertion in RP1 as the cause of RP in this family with dominantly inherited RP.

Funder

FinELib

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3