Analysis of Factors Affecting the Over-Representation of Sequential Crashes in Freeway Tunnels: Using Rule-Based Data Mining Method

Author:

Li Shun1,Huang Shuai1,Wang Jie12ORCID,He Shijian1ORCID

Affiliation:

1. School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China

2. Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science and Technology, Changsha 410114, China

Abstract

The paper provides an empirical analysis of road/tunnel design, traffic volume, and environmental factors associated with the increased likelihood of sequential crashes in freeway tunnels. The association rule mining and decision tree methods are employed since both of them are capable of identifying complicated interactions among variables and expressing them in the form of rules. Results show that tunnel length, traffic congestion, time of day, season, and vehicle type are the significant factors influencing the likelihood of sequential crashes in freeway tunnels. More importantly, association rule mining and decision tree analysis reveal that a combination of road/tunnel design, traffic, and environmental factors produces even a higher likelihood of sequential crashes, leading to a series of hazardous situations. For example, when factors including long tunnel and grade ≤ 2%, fourth level, and winter are combined, the proportion of sequential crashes is more than twice the average proportion of sequential crashes in the complete tunnel crash database. Traffic safety management should pay more attention to monitoring these hazardous situations which are more likely to be linked to sequential crashes.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3