Research on Surface Defect Detection of Rare-Earth Magnetic Materials Based on Improved SSD

Author:

Zhang Bin1ORCID,Fang Shuqi1ORCID,Li Zhixi1ORCID

Affiliation:

1. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China

Abstract

In order to overcome the limitation of manual visual inspection of surface defects of rare-earth magnetic materials and increase production efficiency of traditional rare-earth enterprises, a detection method based on improved SSD (Single Shot Detector) is proposed. The SSD model is improved from two aspects for better performance in the detection of small defects. First of all, the multiscale receptive field module is embedded into the backbone network of the algorithm to improve the feature extraction ability of the model. Secondly, the interlayer feature fusion strategy of bidirectional feature pyramid in PANet (path aggregation network) is integrated into the model. In order to enhance the detection ability of the model, the high-level semantic information is strengthened by an efficient channel attention mechanism. The detection speed of the improved SSD algorithm is 55FPS, and the mAP (mean Average Precision) is up to 83.65%, which is 3.41% higher than of the original SSD algorithm, and the ability to identify small defects is significantly improved.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference24 articles.

1. Review of vision-based steel surface inspection systems

2. Visual inspection and classification algorithm of rail surface defect;X. Tang;Computer Engineering,2013

3. Wafer defect detection and classification algorithms based on convolutional neural network;X. Fang;Computer Engineering,2018

4. Estimation of Low Nutrients in Tomato Crops Through the Analysis of Leaf Images Using Machine Learning

5. A Fully Convolutional Neural Network-based Regression Approach for Effective Chemical Composition Analysis Using Near-infrared Spectroscopy in Cloud

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3