Methodology to Forecast Road Surface Temperature with Principal Components Analysis and Partial Least-Square Regression: Application to an Urban Configuration

Author:

Marchetti M.1,Khalifa A.123,Bues M.3

Affiliation:

1. Cerema, DTer Est, ERA 31, 54510 Tomblaine, France

2. IFSTTAR, Centre de Nantes, route de Bouaye, CS4, 44344 Bouguenais Cedex, France

3. UMR GeoRessources, Université de Lorraine, 54000 Nancy, France

Abstract

A forecast road surface temperature (RST) helps winter services to optimize costs and to reduce the deicers environmental impacts. Data from road weather information systems (RWIS) and thermal mapping are considered inputs for forecasting physical numerical models. Statistical models include many meteorological parameters along routes and provide a spatial approach. It is based on typical combinations resulting from treatment and analysis of a database from measurements of road weather stations or thermal mapping, easy, reliable, and cost effective to monitor RST, and many meteorological parameters. A forecast dedicated to road networks should combine both spatial and time forecasts needs. This study contributed to building a reliable RST forecast based on principal component analysis (PCA) and partial least-square (PLS) regression. An urban stretch with various weather conditions and seasons was monitored over several months to generate an appropriate number of samples. The study first consisted of the identification of its optimum number to establish a reliable forecast. A second aspect is aimed at comparing RST forecasts from PLS model to measurements. Comparison indicated a forecast over an urban stretch with up to 94% of values within ±1°C and over 80% within ±3°C.

Funder

Météo France

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3