Polaron Mass and Electron-Phonon Correlations in the Holstein Model

Author:

Zoli Marco1ORCID

Affiliation:

1. Dipartimento di Fisica, Universitá di Camerino, 62032 Camerino, Italy

Abstract

The Holstein Molecular Crystal Model is investigated by a strong coupling perturbative method which, unlike the standard Lang-Firsov approach, accounts for retardation effects due to the spreading of the polaron size. The effective mass is calculated to the second perturbative order in any lattice dimensionality for a broad range of (anti)adiabatic regimes and electron-phonon couplings. The crossover from a large to a small polaron state is found in all dimensionalities for adiabatic and intermediate adiabatic regimes. The phonon dispersion largely smoothes such crossover which is signalled by polaron mass enhancement and on-site localization of the correlation function. The notion of self-trapping together with the conditions for the existence of light polarons, mainly in two- and three-dimensions, is discussed. By the imaginary time path integral formalism I show how nonlocal electron-phonon correlations, due to dispersive phonons, renormalize downwards thee-phcoupling justifying the possibility for light and essentially small 2D Holstein polarons.

Publisher

Hindawi Limited

Subject

Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3