Improvement of Landfill Leachate Biodegradability with Ultrasonic Process

Author:

Amirhossein Mahvi1,Aliakbar Roodbari2,Ramin Nabizadeh Nodehi1ORCID,Simin Naseri1,Mohammadhadii Dehghani1,Mahmood Alimohammadi1

Affiliation:

1. National Institute of Health Research Tehran University of Medical Sciences, Tehran, Iran

2. School of Public Health and Center for Environmental Research Tehran University of Medical Sciences, Tehran, Iran

Abstract

Leachate from mature landfills is typically characterized by high ammonium (NH4+) content, low biodegradability (low BOD5/COD ratio) and high fraction of refractory and large organic molecules such as humic and fulvic acids. Mature leachate effluents are known to contain recalcitrant and/or non-biodegradable organic substances and biological processes are not efficient in these cases. A promising alternative to complete oxidation of biorecalcitrant leachate is the use of ultrasonic process as pre-treatment to convert initially biorecalcitrant compounds to more readily biodegradable intermediates, followed by biological oxidation of these intermediates to biomass and water. The objectives of this study are to investigate the effect of son catalysts process on biodegradability improvement. Results showed that when applied as relatively brief pre-treatment systems, the sonocatalysis processes induce several modifications of the matrix, which results in significant enhancement of its biodegradability. For this reason, the integrated chemical–biological systems proposed here represent a suitable solution for the treatment of landfill leachate samples with an efficient remediation of the relevant parameters (COD, TOC).

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3