Validity and Reliability of Upper Limb Functional Assessment Using the Microsoft Kinect V2 Sensor

Author:

Cai Laisi1ORCID,Ma Ye1ORCID,Xiong Shuping2ORCID,Zhang Yanxin3ORCID

Affiliation:

1. The Research Academy of Grand Health, Faculty of Sport Science, Ningbo University, Ningbo, China

2. Department of Industrial and Systems Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

3. Department of Exercise Science, Faculty of Science, The University of Auckland, New Zealand

Abstract

Objective. To quantify the concurrent accuracy and the test-retest reliability of a Kinect V2-based upper limb functional assessment system. Approach. Ten healthy males performed a series of upper limb movements, which were measured concurrently with Kinect V2 and the Vicon motion capture system (gold standard). Each participant attended two testing sessions, seven days apart. Four tasks were performed including hand to contralateral shoulder, hand to mouth, combing hair, and hand to back pocket. Upper limb kinematics were calculated using our developed kinematic model and the UWA model for Kinect V2 and Vicon. The interdevice coefficient of multiple correlation (CMC) and the root mean squared error (RMSE) were used to evaluate the validity of the kinematic waveforms. Mean absolute bias and Pearson’s r correlation were used to evaluate the validity of the angles at the points of target achieved (PTA) and the range of motion (ROM). The intersession CMC and RMSE and the intraclass correlation coefficient (ICC) were used to assess the test-retest reliability of Kinect V2. Main Results. Both validity and reliability are found to be task-dependent and plane-dependent. Kinect V2 had good accuracy in measuring shoulder and elbow flexion/extension angular waveforms (CMC>0.87), moderate accuracy of measuring shoulder adduction/abduction angular waveforms (CMC=0.69-0.82), and poor accuracy of measuring shoulder internal/external angles (CMC<0.6). We also found high test-retest reliability of Kinect V2 in most of the upper limb angular waveforms (CMC=0.75-0.99), angles at the PTA (ICC=0.65-0.91), and the ROM (ICC=0.68-0.96). Significance. Kinect V2 has great potential as a low-cost, easy implemented device for assessing upper limb angular waveforms when performing functional tasks. The system is suitable for assessing relative within-person change in upper limb motions over time, such as disease progression or improvement due to intervention.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3