Deep Reinforcement Learning-Based Task Offloading for Parked Vehicle Cooperation in Vehicular Edge Computing

Author:

Zhao Hui1ORCID,Hua Jiwei2ORCID,Zhang Zusheng1ORCID,Zhu Jinqi2ORCID

Affiliation:

1. School of Cyberspace Security, Dongguan University of Technology, Dongguan, China

2. School of Computer and Information Engineering, Tianjin Normal University, Tianjin, China

Abstract

Vehicular edge computing (VEC) has greatly enhanced the quality of vehicle service with low latency and high reliability. However, in some areas not covered by roadside infrastructures or in cases when the infrastructures are damaged or fail, the offloaded tasks cannot have the chance to be performed. Even in the areas deployed with infrastructures, when a large number of offloaded tasks are generated, the edge servers may not be capable of processing them in time, owing to their computing resources constraint. Based on the above observations, we proposed the idea of parked vehicle cooperation in VEC, which uses roadside parked vehicles with underutilized computational resources to cooperate with each other to perform the compute-intensive tasks. Our approach aims to overcome the challenge brought by infrastructure lacking or failure and make up for the shortage of computing resources in VEC. In our approach, firstly, the roadside parked vehicles are managed as different parking clusters. Then, the optimal amount of resources required for each offloaded task is analyzed. Furthermore, a task offloading algorithm based on deep reinforcement learning (DRL) is proposed to minimize the total cost, which is composed of the task execution delay and the energy consumption overhead of the parked vehicles for executing the task. A large number of simulation results show that, compared with other algorithms, our approach not only has the highest task completion execution successful rate, but also has the lowest task execution cost.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3