Machine Learning-Based Multimodel Computing for Medical Imaging for Classification and Detection of Alzheimer Disease

Author:

Alghamedy Fatemah H.1ORCID,Shafiq Muhammad2ORCID,Liu Lijuan2ORCID,Yasin Affan3ORCID,Khan Rehan Ali4ORCID,Mohammed Hussien Sobahi5ORCID

Affiliation:

1. Applied College, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

2. School of Artificial Intelligence, Neijiang Normal University, Neijiang, Sichuan, China

3. School of Software, Tsinghua University, Beijing 100084, China

4. Department of Electrical Engineering, University of Science & Technology, Bannu (28100), Pakistan

5. University of Gezira, Wad Medani, Sudan

Abstract

Alzheimer is a disease that causes the brain to deteriorate over time. It starts off mild, but over the course of time, it becomes increasingly more severe. Alzheimer’s disease causes damage to brain cells as well as the death of those cells. Memory in humans is especially susceptible to this. Memory loss is the first indication of Alzheimer’s disease, but as the disease progresses and more brain cells die, additional symptoms arise. Medical image processing entails developing a visual portrayal of the inside of a body using a range of imaging technologies in order to discover and cure problems. This paper presents machine learning-based multimodel computing for medical imaging for classification and detection of Alzheimer disease. Images are acquired first. MRI images contain noise and contrast problem. Images are preprocessed using CLAHE algorithm. It improves image quality. CLAHE is better to other methods in its capacity to enhance the look of mammography in minute places. A white background makes the lesions more obvious to the naked eye. In spite of the fact that this method makes it simpler to differentiate between signal and noise, the images still include a significant amount of graininess. Images are segmented using the k-means algorithm. This results in the segmentation of images and identification of region of interest. Useful features are extracted using PCA algorithm. Finally, images are classified using machine learning algorithms.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3