Epidemiological Characteristics of Generalized COVID-19 Deterministic Disease Model

Author:

Li Shuo1,Hussain Nasir2,Khan Ihsan Ullah2,Hussain Amjid2,Teklu Shewafera Wondimagegnhu3ORCID

Affiliation:

1. School of Mathematics and Data Sciences, Changji University, Changji, Xinjiang 831100, China

2. Department of Mathematics, Institute of Numerical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan

3. Department of Mathematics, College of Natural and Computational Science, Debre Berhan University, Debre Berhan, Ethiopia

Abstract

Coronavirus disease 2019 (COVID-19) is an infection that can result in lung issues such as pneumonia and, in extreme situations, the most severe acute respiratory syndrome. COVID-19 is widely investigated by researchers through mathematical models from different aspects. Inspired from the literature, in the present paper, the generalized deterministic COVID-19 model is considered and examined. The basic reproduction number is obtained which is a key factor in defining the nonlinear dynamics of biological and physical obstacles in the study of mathematical models of COVID-19 disease. To better comprehend the dynamical behavior of the continuous model, two unconditionally stable schemes, i.e., mixed Euler and nonstandard finite difference (NSFD) schemes are developed for the continuous model. For the discrete NSFD scheme, the boundedness and positivity of solutions are discussed in detail. The local stability of disease-free and endemic equilibria is demonstrated by constructing Jacobian matrices for NSFD scheme; nevertheless, the global stability of aforementioned equilibria is verified by using Lyapunov functions. Numerical simulations are also presented that demonstrate how both the schemes are effective and suitable for solving the continuous model. Consequently, the outcomes obtained through these schemes are completely according to the solutions of the continuous model.

Funder

Undergraduate Education Teaching Research and Reform Project Foundation of Xinjiang Province

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3