Clinical Management of Implant Prostheses in Patients with Bruxism

Author:

Komiyama Osamu1,Lobbezoo Frank2,De Laat Antoon3,Iida Takashi1,Kitagawa Tsuyoshi4,Murakami Hiroshi4,Kato Takao4,Kawara Misao1

Affiliation:

1. Department of Oral Function and Rehabilitation, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 271-8587, Japan

2. Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1066 1081 LA Amsterdam, The Netherlands

3. Department of Oral Health Sciences KU Leuven and Department of Dentistry, University Hospitals KU Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium

4. Department of Oral Implantology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 271-8587, Japan

Abstract

There is general agreement that excessive stress to the bone-implant interface may result in implant overload and failure. Early failure of the implant due to excessive loading occurs shortly after uncovering the implant. Excess load on a final restoration after successful implant integration can result in physical failure of the implant structure. Many clinicians believe that overload of dental implants is a risk factor for vertical peri-implant bone loss and/or may be detrimental for the suprastructure in implant prostheses. It has been documented that occlusal parafunction, such as, bruxism (tooth grinding and clenching) affects the outcome of implant prostheses, but there is no evidence for a causal relation between the failures and overload of dental implants. In spite of this lack of evidence, often metal restorations are preferred instead of porcelain for patients in whom bruxism is presumed on the basis of tooth wear. The purpose of this paper is to discuss the importance of the occlusal scheme used in implant restorations for implant longevity and to suggest a clinical approach and occlusal materials for implant prostheses in order to prevent complications related to bruxism.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3