Shape Optimization and Stability Analysis for Kiewitt Spherical Reticulated Shell of Triangular Pyramid System

Author:

Zhang Le-Wen1,Wu Jing1ORCID,Zhang Da-Liang2

Affiliation:

1. Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China

2. Shandong Agriculture and Engineering University, Jinan, Shandong 250100, China

Abstract

The Kiewitt spherical reticulated shell of triangular pyramid system is taken as the object of this study; a macroprogram of parametric modeling is developed by using the ANSYS Parametric Design Language. The minimum structural total weight is taken as the objective function, and a shape optimization program is proposed and compiled by adopting the sequence two-stage algorithm in FORTRAN environment. Then, the eigenvalue buckling analysis for Kiewitt spherical reticulated shell of triangular pyramid system is carried out with the span of 90 m and rise-span ratio of 1/7~1/3. On this basis, the whole nonlinear buckling process of the structure is researched by considering initial geometrical imperfection. The load-displacement curves are drawn, and the nonlinear behaviors of special nodes are analyzed. The structural nonlinear behaviors affected by rise-span ratio are discussed. Finally, the stability of reticulated shell before and after optimization is compared. The research results show that (1) users can easily get the required models only by inputting five parameters, i.e., the shell span (S), rise (F), latitudinal portions (Kn), radial loops (Nx), and thickness (T). (2) Under the conditions of different span and rise-span ratio, the optimal grid number and bar section for the Kiewitt spherical reticulated shell of triangular pyramid system existed after optimization; i.e., the structural total weight is the lightest. (3) The whole rigidity and stability of the Kiewitt spherical reticulated shell of triangular pyramid system are very nice, and the reticulated shell after optimization can still meet the stability requirement. (4) When conducting the reticulated shell design, the structural stability and carrying capacity can be improved by increasing the rise-span ratio or the rise. (5) From the perspective of stability, the rise-span ratio of the Kiewitt spherical reticulated shell of triangular pyramid system should not choose 1/7.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3