Effect of In-Cylinder Low-Pressure Direct Injection Strategy on the Atomization and Combustion Process of a Small-Scaled Gasoline Wankel Rotary Engine

Author:

Li Yuan1ORCID,Liu Jinxiang1ORCID,Huang Weiqing1ORCID,Wang Nana2ORCID

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Science and Technology Innovation Center, Beijing 100012, China

Abstract

To solve the problem of poor atomization and combustion in a small-scaled gasoline Wankel rotary engine (WRE) with low-pressure port injection mode, the numerical simulation was used to optimize the injection strategy. Firstly, the effects of in-cylinder temperature and pressure on gasoline atomization characteristics were studied, and the optimal injection timing was determined. Based on this, the influence of injection position, injection angle, and installation direction on the atomization, fuel-air mixing, and combustion processes of low-pressure direct injection (DI) small-scaled gasoline WRE was investigated. The results show that the injection angle is a key factor in determining the gasoline atomization characteristics. Injecting along the direction of rotor rotation causes the impingement between fuel bundle and combustion chamber pocket, resulting in the smaller Sauter mean diameter (SMD) and liquid penetration length (LPL). The installation direction of nozzle plays an important role in the airflow movement. When the nozzle is vertical-installed, the airflow repeatedly crosses to form multiple eddies, making the fuel to move more easily towards the front of combustion chamber. When the nozzle is parallel-installed at the lower edge of the installing zone and injecting along the direction of rotor rotation, the peak in-cylinder pressure is the largest and increased by 21% compared to the original port injection. By this injection strategy, the problem of incomplete combustion for the studied small-scaled gasoline WRE could be almost completely solved.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3