On the Optimal Control of HIV-TB Co-Infection and Improvement of Workplace Productivity

Author:

Seidu Baba1ORCID,Makinde Oluwole Daniel2ORCID,Seini Ibrahim Yakubu3ORCID

Affiliation:

1. Department of Mathematics, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana

2. Faculty of Military Science, Stellenbosch University, Stellenbosch, South Africa

3. Department of Mechanical and Industrial Engineering, School of Engineering, University for Development Studies, Tamale, Ghana

Abstract

Human immunodeficiency virus (HIV) and tuberculosis (TB) have long been known to have a synergistic relationship. This is a result of each of the diseases impacting negatively on the immune system of the infected persons. The impact of these diseases on workforce productivity is studied in this paper from the viewpoint of dynamical systems. In this paper, we present a nonlinear ordinary differential equation model to study the dynamics of HIV-TB co-infection and its effect on workforce productivity. The main model is first decoupled into two basic submodels of HIV-only and TB-only models, whose qualitative properties are presented before the qualitative properties of the main model are studied. While the HIV-only model is shown to have a globally asymptotically stable disease-free equilibrium whenever its basic reproduction number is less than unity, the TB-only model is shown to exhibit backward bifurcation under some conditions. To investigate the impact of various intervention strategies on the control of the co-infection and improvement of workforce productivity, five time-dependent controls (involving transmission prevention for the two diseases, therapy for the two diseases, and capacity building for improved workforce productivity) are incorporated into the basic model to form an optimal control problem, which is qualitatively analyzed using Pontryagin’s maximum principle and numerically simulated. Incremental cost-effectiveness analysis is conducted with the results of the numerical simulations. It is observed that the most cost-effective strategy for fighting the spread of the co-infection with enhanced productivity is that of combining both preventative and curative measures along with skills training.

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3